antropy.svd_entropy¶
- antropy.svd_entropy(x, order=3, delay=1, normalize=False)[source]¶
Singular Value Decomposition entropy.
- Parameters
- xlist or np.array
One-dimensional time series of shape (n_times)
- orderint
Order of SVD entropy (= length of the embedding dimension). Default is 3.
- delayint
Time delay (lag). Default is 1.
- normalizebool
If True, divide by log2(order!) to normalize the entropy between 0 and 1. Otherwise, return the permutation entropy in bit.
- Returns
- svd_efloat
SVD Entropy
Notes
SVD entropy is an indicator of the number of eigenvectors that are needed for an adequate explanation of the data set. In other words, it measures the dimensionality of the data.
The SVD entropy of a signal \(x\) is defined as:
\[H = -\sum_{i=1}^{M} \overline{\sigma}_i log_2(\overline{\sigma}_i)\]where \(M\) is the number of singular values of the embedded matrix \(Y\) and \(\sigma_1, \sigma_2, ..., \sigma_M\) are the normalized singular values of \(Y\).
The embedded matrix \(Y\) is created by:
\[y(i)=[x_i,x_{i+\text{delay}}, ...,x_{i+(\text{order}-1) * \text{delay}}]\]\[Y=[y(1),y(2),...,y(N-(\text{order}-1))*\text{delay})]^T\]Examples
SVD entropy with order 2
>>> import numpy as np >>> import antropy as ant >>> import stochastic.processes.noise as sn >>> x = [4, 7, 9, 10, 6, 11, 3] >>> # Return a value in bit between 0 and log2(factorial(order)) >>> print(ant.svd_entropy(x, order=2)) 0.7618909465130066
Normalized SVD entropy with order 3
>>> x = [4, 7, 9, 10, 6, 11, 3] >>> # Return a value comprised between 0 and 1. >>> print(ant.svd_entropy(x, order=3, normalize=True)) 0.6870083043946692
Fractional Gaussian noise with H = 0.5
>>> rng = np.random.default_rng(seed=42) >>> x = sn.FractionalGaussianNoise(hurst=0.5, rng=rng).sample(10000) >>> print(f"{ant.svd_entropy(x, normalize=True):.4f}") 1.0000
Fractional Gaussian noise with H = 0.9
>>> rng = np.random.default_rng(seed=42) >>> x = sn.FractionalGaussianNoise(hurst=0.9, rng=rng).sample(10000) >>> print(f"{ant.svd_entropy(x, normalize=True):.4f}") 0.9080
Fractional Gaussian noise with H = 0.1
>>> rng = np.random.default_rng(seed=42) >>> x = sn.FractionalGaussianNoise(hurst=0.1, rng=rng).sample(10000) >>> print(f"{ant.svd_entropy(x, normalize=True):.4f}") 0.9637
Random
>>> rng = np.random.default_rng(seed=42) >>> print(f"{ant.svd_entropy(rng.random(1000), normalize=True):.4f}") 0.8527
Pure sine wave
>>> x = np.sin(2 * np.pi * 1 * np.arange(3000) / 100) >>> print(f"{ant.svd_entropy(x, normalize=True):.4f}") 0.1775
Linearly-increasing time-series
>>> x = np.arange(1000) >>> print(f"{ant.svd_entropy(x, normalize=True):.4f}") 0.0053