yasa.sliding_window#
- yasa.sliding_window(data, sf, window, step=None, axis=-1)#
Calculate a sliding window of a 1D or 2D EEG signal.
Added in version 0.1.7.
- Parameters:
- datanumpy array
The 1D or 2D EEG data.
- sffloat
The sampling frequency of
data
.- windowint
The sliding window length, in seconds.
- stepint
The sliding window step length, in seconds. If None (default),
step
is set towindow
, which results in no overlap between the sliding windows.- axisint
The axis to slide over. Defaults to the last axis.
- Returns:
- timesnumpy array
Time vector, in seconds, corresponding to the START of each sliding epoch in
strided
.- stridednumpy array
A matrix where row in last dimension consists of one instance of the sliding window, shape (n_epochs, …, n_samples).
Notes
This is a wrapper around the
numpy.lib.stride_tricks.as_strided
function.Examples
With a 1-D array
>>> import numpy as np >>> from yasa import sliding_window >>> data = np.arange(20) >>> times, epochs = sliding_window(data, sf=1, window=5) >>> times array([ 0., 5., 10., 15.])
>>> epochs array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])
>>> sliding_window(data, sf=1, window=5, step=1)[1] array([[ 0, 1, 2, 3, 4], [ 2, 3, 4, 5, 6], [ 4, 5, 6, 7, 8], [ 6, 7, 8, 9, 10], [ 8, 9, 10, 11, 12], [10, 11, 12, 13, 14], [12, 13, 14, 15, 16], [14, 15, 16, 17, 18]])
>>> sliding_window(data, sf=1, window=11)[1] array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
With a N-D array
>>> np.random.seed(42) >>> # 4 channels x 20 samples >>> data = np.random.randint(-100, 100, size=(4, 20)) >>> epochs = sliding_window(data, sf=1, window=10)[1] >>> epochs.shape # shape (n_epochs, n_channels, n_samples) (2, 4, 10)
>>> epochs array([[[ 2, 79, -8, -86, 6, -29, 88, -80, 2, 21], [-13, 57, -63, 29, 91, 87, -80, 60, -43, -79], [-50, 7, -46, -37, 30, -50, 34, -80, -28, 66], [ -9, 10, 87, 98, 71, -93, 74, -66, -20, 63]], [[-26, -13, 16, -1, 3, 51, 30, 49, -48, -99], [-12, -52, -42, 69, 87, -86, 89, 89, 74, 89], [-83, 31, -12, -41, -87, -92, -11, -48, 29, -17], [-51, 3, 31, -99, 33, -47, 5, -97, -47, 90]]])